T1. HukumKomutatif
(a) A + B = B + A
Pembuktian:
A | B | A+B | B+A |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
(b) A B = B A
Pembuktian:
A | B | AB | BA |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
T2. HukumAsosiatif
(a) (A + B) + C = A + (B + C)
Pembuktian:
A | B | C | A+B | B+C | (A+B)+C | A+(B+C) | ||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
0 | 0 | 1 | 0 | 1 | 1 | 1 | ||||
0 | 1 | 0 | 1 | 1 | 1 | 1 | ||||
0 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
1 | 0 | 0 | 1 | 0 | 1 | 1 | ||||
1 | 0 | 1 | 1 | 1 | 1 | 1 | ||||
1 | 1 | 0 | 1 | 1 | 1 | 1 | ||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
(b) (A B) C = A (B C)
Pembuktian:
A | B | C | A B | B C | (A B) C | A (B C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
T3. HukumDistributif
(a) A (B + C) = A B + A C
Pembuktian:
A | B | C | B+C | A B | A C | A (B+C) | A B+A C |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
(b) A + (B C) = (A + B) (A + C)
Pembuktian:
A | B | C | B C | A+B | A+C | A+(B C) | (A+B)(A+C) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
T4. Hukum Identity
(a) A + A = A
Pembuktian:
A | A + A |
0 | 0 |
0 | 0 |
1 | 1 |
1 | 1 |
(b) A A = A
Pembuktian:
A | A A |
0 | 0 |
0 | 0 |
1 | 1 |
1 | 1 |
T5.
(a) A B + AB = A (BENAR)
Pembuktian:
A | B | B(invers) | A B | A B(invers) | |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 |
Pembuktian:
A | B | B(invers) | A+B | A+B(invers) | ( A+B) (A+B)=A |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 |
T6. HukumRedudansi
(a) A + A B = A (BENAR)
Pembuktian:
A | B | A B | A + A B |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 |
(b) A (A + B) = A (BENAR)
Pembuktian:
A | B | A + B | A (A + B) = A |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
T7
(a) 0 + A = A (BENAR)
Pembuktian:
A | 0 | 0 + A = A |
0 | 0 | 0 |
0 | 0 | 0 |
1 | 0 | 1 |
1 | 0 | 1 |
(b)0 A = 0 (BENAR)
Pembuktian:
A | 0 | 0 A = 0 |
0 | 0 | 0 |
0 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 0 |
T8
(a) 1 + A = 1(BENAR)
A | 1 | 1 + A |
0 | 1 | 1 |
0 | 1 | 1 |
1 | 1 | 1 |
1 | 1 | 1 |
(b) 1 A = A (BENAR)
Pembuktian:
A | 1 | 1 A = A |
0 | 1 | 0 |
0 | 1 | 0 |
1 | 1 | 1 |
1 | 1 | 1 |
T9
(a) A + A =1 (BENAR)
Pembuktian:
A | A | 1 | |
0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 |
(b) A A = 0 (BENAR)
A | 0 | ||
0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
T10
Pembuktian:
A | B | A+B | |||
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 |
(b) A (A + B) = A B(BENAR)
Pembuktian:
A | B | A B | |||
0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 |
T11. TheoremaDe Morgan's
(a) (A + B) = A B
A | B | A+B | ||||
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
A | B | A B | ||||
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |